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LETTER TO THE EDITOR 

Application of the equation-of-motion method to the 
calculation of optical properties 

D Weairet, B J Hickey$ and G J Morganf 
t Department of Physics, Trinity College, Dublin, Ireland 
i Department of Physics, University of Leeds, Leeds LS2 9JT, UK 

Received 23 September 1991 

Abstract. Weshow how theequationof-motionmethodcan be used tocompute the dielectric 
function E(O)  for a model of amorphous Si. The calculation uses a plane-wave basis but 
could be adapted to any other convenient basis. In principle, such calculations can be 
extended to non-linear optical properties. 

The equation-of-motion method, in the sense used here, is a numerical technique 
originally developed to calculate electronic and vibrational densities of states of dis- 
ordered solids (Alben et a1 1975). It subsequently proved to be adaptable to the eval- 
uation of expressions for other significant electronic properties, such as the electronic 
conductivity (the Kubo formula: Kramer and Weaire 1978), localization (inverse par- 
ticipation ratio: Weaire and Williams 1977) and spectral functions (Hickey and Morgan 
1986). It is a useful alternative to the brute-force methodology of band structure inte- 
grationwhenever the numberofeigenstatesbecomessolargeas torenderthemoredirect 
methods impracticable. Sumsovereigenstates determined by matrix diagonalization are 
replaced by time averages of productsof certain random vectors whose time dependence 
is governed by Schrodinger’s equation. 

In this paper we develop a further field of application of the method, in showing how 
it may be used for interband optical properties. Here again certain cases, particularly 
involving amorphous solids or non-linear coefficients, or both, can defeat the traditional 
methodology. For this preliminary study we take as an example the optical absorption 
spectrum of amorphous Si, as represented by the 216-atom structural model of Wooten 
and Weaire (1986). Using a pseudopotential (Hickey and Morgan 1986) we require a 
very large number of plane-wave basis functions: we shall use 3071 such basis functions 
here as has proved effective in calculations of the conductivity in a-Si (Hickey et a1 
1990a). 

The standard expression for the imaginary part of the dielectric constant is (Connell 
1976) 

where G = 2 W ’  (Zne/m)’. Here w is the frequency, i and f denote initial (valence 
band) and fmal (conduction band) wavefunctions respectively, p is a component of the 
momentum operator in an arbitrary direction, in and e are the mass and charge of an 
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Figure I .  The densities of states for the valence 
band and conduction projected out of the total 
density. The overlap of the two bands can be 
reducedby increasingthe run timeahich leads to 
a sharper filter function. 

Figure 2. The behaviour of E ~ ( E )  as a function of 
energy. 

electron, and C2 is the volume of the system. In principle we are dealing with an isotropic 
system. In practice our finite model will have some slight anisotropy. Results given here 
are for an arbitrarily chosen direction ofp,  While we c o n h e  the present calculation to 
this familiar linear case, it should be stressed that similar techniques can be used to 
evaluate non-linear optical coefficients. The computational cost of the calculation of 
one term of the perturbation formula for a nth order optical coefficient varies only 
linearly with n, whereas direct evaluation will scale exponentially with n. 

To compute (1) we are required to construct two normalized random vectors which 
represent states Iv) and IC) confined to the subspaces of the valence and conduction 
bands respectively. This may be done by projecting out such parts from a completely 
random initial choice, as described by Hickey etaZ(1990a, b). Figure 1 shows the partial 
densities of states of the two bands, as given by the equation-of-motion method, using 
two such vectors normalized to N, and N ,  respectively, the number of eigenstates in the 
two bands. N ,  = ZN, where Nis the number of atoms in the finite sample of a-Si. It is 
perfectly possible to project out the valence and conduction bands more precisely using 
longer run times but this is not important in the context of the present paper where 
the emphasis is on the usefulness of the equation-of-motion method. In general, this 
projection method is a very useful procedure because it could be used to perform self- 
consistent calculations and to study very large models by projecting out a narrow range 
of eigenstates and thereby reducing the time step in the equation-of-motion method. 

As in other developments of the method, the Schrodinger equation is integrated to 
obtain the time-dependent vectors I v(r)) and \c(r)). Using these, the expression (1) may 
be evaluated for E = ho as 

J t  J 
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and q is a damping parameter. Use of finite q implies Lorentzian broadeningof the final 
result, that is, convolution with the functionf(E) = n-’q(EZ + q 2 ) - ’ .  

To show this, expand the two time-dependent vectors as sums over eigenstates In) 
and Im) belonging to the relevant bands: 

~v(t)) = X u n  e - ~ ~ ~ ’ f i l E )  (3) 

Ic(t)) = 2 b, Im). (4) 

n 

m 

Most of the resulting products are associated with complex exponentials which average 
to zero as T- ,  m in (2). The expression in square brackets thus reduces to 

The quantities I U, [‘and lb.1’ are random variables and we normalize the wavefunction 
so that their average value is unity. This completes the proof of the equivalence of (1) 
and (2), apart from the fluctuations due to these random variables, which are largely 
suppressed by the broadening of the spectrum entailed by the introduction of finite q .  

As a consequence of the finite resolution associated with q and the projection into 
the two subspaces, such a method will not yield a zero value of E’ for energies less than 
the band gap. Indeed, the result diverges as E-’ as E- ,  0, due to the prefactor in (2). 
Fluctuations due to the small size of the sample are then more pronounced at large E. 
It is, therefore, not useful for this small model in relation to the details of optical 
absorptionedges, but cangiveinformationon the hroadfeaturesofinterbandabsorption 
at higher energies. In the present case, there is a single peak at approximately E = 
0.25 Ryd (Pierce and Spicer 1972), which is well reproduced by the calculation (figure 
2). Other less-pronounced features are artefacts of the finite structural model used, and 
can be further reduced by calculations for larger models. Much larger models and run 
times can he handled using tight-binding schemes to describe the electronic structure. 
The fact that the height of the calculated peak is smaller than the experimental value is 
easilyexplained bythesmoothing effect ofthe finitevalueof q .  Thecalculationsreported 
here correspond to using a time step z which is one-tenth of 2nti/E,,,, where E,% is the 
total hand width (3.7 Ryd). The value of q chosen is q = 0.05 Ryd which convolutes the 
results with a Lorentzian of half-width 0.05 Ryd, and this relatively large value is 
necessary tosuppressunphysical’noise’due to the finitesizeof thesystem. Inconclusion, 
this calculation would appear to confirm the validity of the equation-of-motion method 
for the calculation of interband optical properties, and encourage its further dev- 
elopment towards non-linear coefficients in particular. 

This work was supported in part by the CEC ESPRIT programme: Basic Research 
Action No. 3177 EPIOPTIC. 
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